INVESTIGATING THE THERMAL INTERACTION BETWEEN
A GAS WELL AND PERMAFROST SOILS

B. L. Krivoshein, A. A. Koshelev, UDC 536.244
Kh. Ya. Rogozhin, and L. E, Sidler

We present a method, a description of the algorithm, and the results from the calculation of
the thermal fields about a gas well drilled through permafrost soil.

As a gas moves through the shaft of a well drilled into permafrest soil the latter is thawed because
the gas temperature in the gas-bearing layers is quite high. In turn, the frozen soil cools the gas, which
may result in the formation of crystalline compounds from the gas and the water, leading to the blockage
of the well, To choose the optimum operating regimes for the well and to select the optimum designs, we
must undertake a simultaneous gas-thermodynamics and thermal calculation of the well—soil system.

These processes are described by a system of differential equations that are rather complex in form.
In this case the problem does not reduce to the solution exclusively of the differential Fourier equation with
the Stefan conditions, since we must take into consideration the processes occurring within the gas moving
through the well. Tt is therefore more advisable and promising to use
electronic digital computers for such calculations, and the computers
— because of their universality — enableus to perform the calculation
for the well —soil system with simultaneous consideration of all opera-
tive factors, and the algorithm realized in the program may include
logical operations dealing with the processing of the initial information
and the derived results. For problems of this class this latter cir-
cumstance is of great significance: first of all, the initial information
includes climatological factors which vary according to statistical
laws and must be processed accordingly; secondly, for variation cal-
culations of multiyear regimes of gas-well operation we obtain a
tremendous amount of results, whose processing and analysis by manu-
al calculation methods requires a substantial expenditure of time.
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Below we discuss the algorithm, the program, and the results
from the calculation of the temperature field about a gas well (for the
conditions of a single northern deposit).
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1. The following information is given: the diameter and depth of
the well, the temperature of the gas-bearing layer, the thermophysical
characteristics of the soil (variable through the depth), the average
monthly temperatures of the ambient air, the duration and average
thickness of the snow cover. We have to determine the temperature
20 field of the soil surrounding the well, with the latter in prolonged op-
eration and with a change in the temperature of the gas through the
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shaft of the well at various gas flow rates.
Since this is an axisymmetric problem, the temperature field
Fig.1. Block diagram of the can be treated as a two-dimensional field — a variation in the tempera-
program. ture with time, through the height and along the radius, i.e., t(T, x, r).
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Fig.2. Convergence of the calculation process for various
magnitudes of the theoretical time interval AT (t] is the
soil temperature, °C; 7 is the time from the start of the -
calculation, the start-up of the well, h): 1) AT = 200; 2)
150; 3) 100; 4) 50 h.

& 6 24 L The boundary conditions are the following (Fig. 3): the temperature at the
e sfcﬁ bottom is constant and equal to the temperature of the gas-bearing layer;
\L \ ~_ = to the left the temperature of the gas in the well, a function of the gas flow
\ \ = : rate, varies with time and through the height, i.e., t(G, 7, x); at the top, the

'\\ ‘ temperature of the ambient air is variable in time, i.e., t(7); to the right,
K = the temperature of the soil unaffected by the well is variable through the

height, while in the upper layers of the soil, where seasonal temperature

fluctuations are felt, the soil temperature varies with time, i.e., t(x, 7).
The region is divided into theoretical volume blocks on the basis of a non-

\ uniform rectangular grid. Horizontally, we took 8 block columns with

widths of 1, 1, 2, 3, 5, 10, and 30 m; verticalily, we took 20 block columns
with heights of 2, 3, 5, 8, 12, 15, 20, 35 with 50, 2 with 87 and 156 and 7

Vs

\ with 110 m. The dimensions along the vertical were chosen so that a whole

number of blocks is associated with each soil layer exhibiting distinct

thermophysical characteristics.

1”0
> 2. An explicit scheme is used to compile the system of algebraic
equations approximating the partial differential equation describing the
A process of nonsteady heat transfer in the soil.

900 \ Each equation is an expression of the heat balance for the theoretical
N 20 volume during the time interval Ar. The increment in the enthalpy of the
1000 1\ block is equal to the sum of the heat flows coming in from all sides (there
\ 25 are four such sides in a two-dimensional scheme) into this block:
1100 — . 1 , , 1 , ,
C; (fi — ti) = [ (ti—l - ti) =+ (tH-l - ti)
i-(i-1) i-(i+1)
1200 70 1 1 , ,
‘ - (1) + a1y @
o Ri—(i—n) Ri-(i-)—n)
Z 32°0-
Fig.3. Isotherms in the soil In Eq. (1)

about the well (L is the dis-

tance to ground level, m: L'
is the distance to the wall of 1 1 r
the well, m); the numerals

C; = ¢ylim (r%i-}-l)b — %)

_1n_i+1_1nr!i ,

R, o=
-0 A ip Mig o Tig )

25,

at the curves denote the tem-

perature values for the soil.
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Rj-(i+1) and Rj_(j_p) are calculated in analogy with Rj_(j_y) and Rj_(j_p). After substitution into (1) of the
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values of the quantities in that equation and after performing appropriate elementary transformations, the
equation assumes the form
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These equations are written for all of the blocks into which the soil is divided. The equations for the
blocks adjacent to the boundaries of the region are somewhat different in form. Thus, for the block adjacent
to the right-hand boundary, the second term in the brackets assumes the form

2L
A; V05 (rz, - 2 mh)

(©—1t).

For the block adjacent to the lower boundary, the fourth term in the brackets has the form

20y — 1) t, —1).
i/hy ‘

For the block adjacent to the left-hand boundary, the first term is
21;

— () — £
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For the block adjacent to the upper boundary, the third term is written in the form
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Since the Reynolds numbers are usually higher than 10° in the flow of a gas through a well, the tem-
perature of the walls of the well are assumed to be equal to the gas temperature. The heat-balance equation
for the moving gas (without consideration of variations in the gas temperature as a consequence of the
throttling process) has the form

Ge(t;—1 ) = =1
i-(i+1) (3)
Ri-gup = L V05 i)
-G 2tk 1l Tivnp
After the substitutions and the transformations, we write (3) in the form
” 2ﬂ)bi li - ,
t;—n = ti - == (th_ t[.H)' (4)

Ga-+bt) In V05 s + f2(i+2)b)
Py

We begin the calculations of the wall temperatures at the various levels from the bottom. Here, for the bot-

tom row of blocks we substitute t{' =t{'; =t; into (4), i.e., the wall temperature in this row is found to be
equal to the temperature of the gas-bearing layers: t{'__n = 1.

3. Figure 1 shows the block diagram of the program for the solution of this problem on a BESM-4
digital computer. The program, together with the information, occupies 2550 cells of the operational memory
and is made up of the following blocks:
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1) the calculation of the initial conditions tti’ of the steady-state thermal regime of the soil on the basis
of the formulas of the one-dimensional temperature field for the average annual temperature of the ambient
air. Transmission of the derived tabulated values of t{ and ti";

2) calculation of complexes depending on the dimensions of the blocks and contained in (2);

3) transmission of the values of Aj and cj;

4) calculation of t{' for the wall of the well according to (4);

6, 8, 10, 12, 14, and 16) calculation of t{' for the soil blocks according to (2);

5,7,9, 11, 13, 15, and 17) transposing t{' to the position of t{ to calculate the next time interval AT;
18) time counter T = ZAT;

19) determination of the outside temperature t,, and the surface snow cover;

20) determination of the latent heat. If ti" < 0 when t{ =0or ti" > 0 and t{ = 0, the calculation is per-
formed in accordance with the usual algorithm involving the use of A; and ¢j of frozen or thawed soils, re-
spectively. If t{' > 0 when t{ = 0, we compare the quantities of heat required to heat the soil from t{ to 0
and to thaw out the active water which this soil contains with the quantities of heat reaching the block in AT
(the part of (2) contained in the brackets). So long as the quantity of incoming heat does not exceed that re-
quired, t{' = 0; as soon as it exceeds that quantity, the calculation is continued in accordance with the usual
algorithm, with the use of the A; and cj for the thawed soil. The calculation is performed in analogous
fashion when the soil freezes (t} = 0, ti < 0).

4. In approximating the linear differential equations to obtain a converging solution, we must satisfy
the following relationships between the time (A7) and space (Ax, Ay) intervals:
1
—T T
20{— + —
(Ax2 Ayz)

Since in this case we have complex boundary conditions (a jumpwise change in the conditions of heat transfer
at the surface of the soil — the deposition and melting of snow, the change in the air temperature) and a
change in the coefficient of thermal diffusivity on phase transition, the use of Eq. (5) to determine the magni-
tude of the time interval At is impossible. We therefore performed certain control caiculations with vari-
ous values for AT,

At < (9)

Figure 2 shows the process of temperature variation in the smallest block of the calculation scheme
(the larger the block, the greater the probability of convergence). Formula (5) yields AT = 200 h for this
block; however, we see from the graph that the process converges only when AT = 100 h. The calculation
of the annual regime with an interval of AT = 100 h requires approximately 1.5 min of machine time, which
is quite acceptable.

Figure 3 shows the isotherms about the well, calculated on the basis of the following data: the average
annual temperature of the ambient air is tamp =—9.9°C, the snow cover with an average depth of h =30 cm re-
mains for 7 months, at a depth of 1300 m the average gas temperature is t; = +32°C, the gas flow rate is G
=776-10° kg/day, the well diameter is d = 0.2 m, and the thermophysical properties of the soil vary with
depth in the following manner:

Depth, m; 0-200 200-420 420-530 530-640 640-1190 1190-1300
Coefficient of thermal

conductivity, W/(m - deg) 2.2 1.5 1.1 1.8 1.0 1.4
Gravimetric heat capacity,

kd/(kg - deg); 0.9 0.84 0.76 0.84 0.76 0.84
Bulk weight, kg/m3 2000 2200 2600 2600 2600 2600

The solid lines show the temperatures in the soil after 7 = 6600 h fromthe start of the operation of
the well, and the dashed lines show the values after 3000 h.
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NOTATION

are, respectively, the specific heat capacity and the density of the soil in the i-th block;

is the coefficient of thermal diffusivity for the soil;

is the height of the block;

are, respectively, the radius of the inside and the outside circumferences of the block;

are the temperatures at the center of the block, at the end and at the beginning of the calcula~
tion time interval A7, respectively;

is the same, for the steady-state regime, without any thermal effect from the well;

is the temperature of the ambient air;

is the temperature of the layer;

is the temperature of the wall of the well at the level of the block center;

is the coefficient of thermal conductivity for the soil in the i-th block;

is the number of blocks in the horizontal row (n = 8);

are, respectively, the thickness of the snow cover and the coefficient of thermal conductivity
for the snow;

is the coefficient of heat transfer between the ground surface and the air;

is the weight flow rate of the gas;

is the heat capacity of the gas.

613



